
Detangling Technology
A closer look at Computer Science education
Clara Martens Avila, BsC Computer Science @University of Amsterdam, 27/10/2022

Technology1 is an essential part of modern society: unless one chooses to live off the grid, some
sort of interaction with it will have to take place. But what kind of interaction occurs, and what
level of understanding is necessary between humans and our technology, is still up for debate.

In this essay I will examine the state of the Computer Science education ecosystem. I would like
to start by proposing five categories of people that require knowledge about technology:

1. The general public, who need to be aware of how to use computers and technology
safely2

2. The academic world outside of Computer Science, who want to discuss the influence of
technology on their own field (be that sociology or business administration)

3. Professionals who need knowledge of technology to do their job correctly, be it for policy
making, management, exploitation or discussion

4. Aspiring programmers, who want to learn how to code to build products
5. Aspiring Computer Scientists, who beyond just coding want to understand the building

blocks of code, computers and its applications

These wants and needs are provided for in a complicated network of bootcamps, traineeships,
online courses, academic and non-academic institutions, elective courses and re-training
programs. But the bottom line in most offerings seems to be: if you want to join the conversation,
learn how to code. This certainly benefits companies desperate for programmers. But does one
need to know how to paint to go to a museum or appreciate art? What if one doesn’t have a talent
for painting (or programming)? Does one need to know the process used to make a knife, to learn
how to use it carefully and to know that the edge is sharp? How does programming knowledge tie
into the discussion around applied sciences versus the academic world? And what exactly is
technology?

Let us start with that last question. It serves as a bridge to the other questions.
A computer scientist would start explaining their field by defining hardware and
software: the distinction between the inner workings of the computer and the art
of writing programs that run on it respectively. This, in conjunction with the
theoretical mathematics at the base of it, are indeed the layers of the “russian
doll” egg (see image) that a computer scientist would concern themselves with.
A programmer would be operating more on the software layer, a computer
architect on the hardware layer.

Essential to this depiction here is that if someone operating on one layer ever
wonders why things have to work the way they do, the answer will usually lie in
the layer under them. This is true all the way down. The most difficult step
however is in the translation between the encapsulating layer, “society”, and the
layers under it. A manager learns how to manage and help grow an IT team, a
sociologist learns how to write a paper on filter bubbles: both approach the field from their own
discipline. And as much as computer scientists would like to deny it, this societal layer is essential
to the concept of technology. A big part of what is colloquially known as “the tech industry” is not
even concerned with programming or computer architecture: the startup founders, marketeers,
crypto grifters and project managers are as much a part of the tech ecosystem as the developers
are, if not more. Programmers are the equivalent of the builders of a house designed by an
architect that may or may not know less about designing houses than they do. 3

It seems common sense to make all other stakeholders in the process of building this house
more conscientious. But does teaching the architect and inhabitants of the house the basics of
laying one brick on top of another help the system? Probably not. So how do we make sure the
building doesn’t crumble underneath us?

I think the solution is threefold. First, we have to put a lot of emphasis on the distinction between
technology and the societal meaning of technology: the inner and outer egg. We have to
acknowledge the translation layer between the “objective” tech and “subjective” use of it4. No
more broad use of the word “tech”! Let tech be the inner egg, and let the humans and
organisations around it be the ones that frame the interpretations and applications of (more)
neutral technological concepts5. This levels the playing field for discussions between the outer
and inner layers. It is important that this levelling goes both ways: computer scientists should not
be able to hide behind technical definitions and concepts to excuse the mismanagement and
misuse of the products they come up with. Likewise, the outer layer should be very mindful of the
perspectives they approach technology with.

Secondly, we have to be open to new ways of teaching the “inner egg”. Being mindful of the
translation that takes place, we must still try to make that translation layer as
thin as possible. As discussed, the main way to bridge this gap employed right
now is to teach non-computer scientists how to code. Almost all Business
(Information) Administration courses in The Netherlands offer some sort of
“introduction to programming” course. I would argue that as a programmer, the
only thing worse than a manager that knows nothing about software
development and infrastructure, is a manager who knows how to declare a
function and is at the very worst point of confidence-ability ratio in the
Dunning-Kruger effect (Dunning, 2011). A parallel can be drawn here with the
productivity paradox: more investment in (in this case) tech education does not
necessarily result in better IT managers (Brynjoffson, 1993). A common
hypothesis to explain the productivity paradox is IT mismanagement. But
programmers do want managers who can support them properly! How do we
teach these managers about the inner egg without coding?

It is important to remember that the inner egg is more than the sum of its parts: Computer
Science, as a scientific field, is a way of looking at the world, of solving problems and approaching
challenges. It is a mindset that makes it very easy for a computer scientist to pick up new
programming languages, to understand the thousands of new libraries that come out every year
for their field of choice, and to have such an abstract understanding of technological concepts
that they can apply it to any situation. Why focus on teaching the outer egg software
development when we can teach people to think like a computer scientist? Computer Science is
full of fundamental building blocks that one does not need to have worked with to understand!

Take for example an API6: a concept encountered by many, understood by few, very useful in
discussions around data, privacy and new stories like the Cambridge Analytica Scandal. Do
people need all the different physics models and formulas used to define gravity to understand
the concept? No. I propose teaching about Computer Science through building blocks like APIs in
a conceptual but applied way, instead of programming.

Third: in an academic sense too we have to be very clear about the distinction between the
practical field of software development and the scientific field of Computer Science. There has
been a push in recent years to make university students more “employable” by teaching them
practical skills. Computer Science, already a very practical program, seems like an ideal
candidate.

The issue here seems to be the societal stigma around practical education. Software companies,
hiring in a very practical field that can easily be self-taught, still give a lot of weight to university
degrees (Mazzina & Dene, 2016). Parents want their children to go to university (Heimlich, 2012)!
This is particularly remarkable considering first-world countries like The Netherlands are
experiencing a huge demand for applied sciences and practical skills (and people who do
possess these skills are rewarded accordingly).

We should give more importance to the theoretical value of Computer Science and export that
to other courses, academic disciplines and societal movements wanting to include technology in
their curriculum. That is how we create an even playing field in which all layers can communicate
and solve problems together, each with at least an understanding of the reasoning of the others.
Simultaneously, we need to make clear that software development is a valuable career path,
through whatever bootcamp or university study one chooses to approach it.

At the beginning of this article I identified five categories of people looking for technological
knowledge. I hope to have made clear that “learning how to code” is not the one-size-fits-all
solution that it seems, and that technological awareness can be presented in any number of ways.
The general public does not need to (and mostly does not want to) know how to code a website
together, but they would benefit from knowing what trackers are beyond “Facebook listening to
everything you do”. Not every developer would benefit from a university education, and not every
computer scientist needs to be a developer. Those who discuss and work with technology would
benefit more from some conceptual Computer Science over learning a few programming basics
and approaching tech problems from their own discipline otherwise. In conclusion: technological
education (to those not seeking to become computer scientists or programmers) can be
simultaneously less in the software layer, and less in the societal layer.

Notes

○ The “egg” graphs are inspired by “the egg” describing science in Scientific Methods in Computer
Science (2022). They are of the author’s own creation though.

○ The author of this piece is finishing up her Computer Science degree, has more than six years of
experience in the tech industry and has both participated in, ran, and taught 6-week part-time web
development bootcamps through Turing Society. She has also followed various courses from social
and information sciences.

○ This article has mostly discussed “the egg” in a top-down manner. The author has hinted towards
making computer scientists more aware of the upper layer as well, but this bottom-up approach will
have to be expanded on in a future article.

1. Technology, in this article, is used as “digital technology”: everything from computers to
smartphones and all the networks and programs those entail.

2. The word need is used here, because not all people are necessarily very aware of or interested in
the dangers of technology.

3. We could go further with this analogy and bring “software-development only” projects into the mix
like a lot of open source software: great project concepts, excellent software execution, but little to
no attention to other aspects necessary for the success of a product like marketing and UX. This
would be the equivalent of a very functional but ugly, inhospitable building.

4. This is, of course, a far more complicated topic, for what is truth and what is objective? See also:
discussions on post-modernism and truth seeking like Post-Truth (2018).

5. I truly believe this, from a philosophical perspective. Even the technological inventions that I
consider most heinous, like NFTs, I still consider neutral (though useless) in their technical definition
and horrendous in their applications.

6. Short for application programming interface, used to request data and processes from other
programs without accessing the source code. An API can be used for example to access map data
from a geographical organisation, without accessing their database directly and ensuring the
organisation has control over the API usage.

References

Brynjoffson, E. (1993, December). The productivity paradox of information technology. Communications of the ACN, 36.

Dodig-Crnkovic, G. (2002). Scientific Methods in Computer Science.

https://www.researchgate.net/publication/2563629_Scientific_Methods_in_Computer_Science

Dunning, D. (2011). The Dunning–Kruger Effect: On Being Ignorant of One's Own Ignorance. Advances in Experimental Social

Psychology, 44. https://www.sciencedirect.com/science/article/abs/pii/B9780123855220000056?via%3Dihub

Heimlich, R. (2012, February 27). Most Parents Expect Their Children to Attend College. Pew Research Center. Retrieved

October 27, 2022, from

https://www.pewresearch.org/fact-tank/2012/02/27/most-parents-expect-their-children-to-attend-college/

Mazzina, A., & Dene, K. (2016, October 7). Do Developers Need College Degrees? Stack Overflow Blog. Retrieved October 27,

2022, from https://stackoverflow.blog/2016/10/07/do-developers-need-college-degrees/

McIntyre, L. (2018). Post-Truth. The MIT Press.

